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[1] We use a multi-model, multi-scenario climate model 
ensemble to identify climate change hotspots in the continental 
United States. Our ensemble consists of the CMIP3 
atmosphere-ocean general circulation models, along with a 
high-resolution nested climate modeling system. We test both 
high (A2) and low (B1) greenhouse gas emissions trajectories, 
as well as two different statistical metrics for identifying 
regional climate change hotspots. We find that the pattern of 
peak responsiveness in the CMIP3 ensemble is persistent 
across variations in GHG concentration, GHG trajectory, and 
identification method. Areas of the southwestern United States 
and northern Mexico are the most persistent hotspots. The 
high-resolution climate modeling system produces highly 
localized hotspots within the basic GCM structure, but with a 
higher sensitivity to the identification method. Across the 
ensemble, the pattern of relative climate change hotspots is 
shaped primarily by changes in interannual variability of the 
contributing variables rather than by changes in the long-term 
means. Citation: Diffenbaugh, N. S., F. Giorgi, and J. S. Pal 

(2008), Climate change hotspots in the United States, Geophys. Res. 
Lett., 35, L16709, doi:10.1029/2008GL035075. 

1. Introduction 

[2] Observed late 20th century global warming has been 
attributed primarily to anthropogenic changes in radiative 
forcing of the climate system [e.g., Intergovernmental Panel 
on Climate Change (IPCC), 2007], with further warming of 
approximately 1 to 6�C likely to occur by the end of the 
21st century [IPCC, 2007]. Precisely how this long-term 
global warming will manifest at smaller spatial and tempo-
ral scales is a key question for understanding, avoiding, and/ 
or preparing for climate change. In particular, design and 
implementation of climate change mitigation and adaptation 
strategies requires quantification of potential spatial hetero-
geneity in the aggregate climate response. Therefore, there 
exists a need to identify climate change hotspots that are 
likely to be most responsive to anthropogenic changes in 
climate forcing, and to understand the mechanisms under-
lying the enhanced responsiveness in the hotspot regions. 
[3] Our analysis is focused on the continental United States 

(U.S.). The relative sensitivity of climate to greenhouse gas 
(GHG) forcing within the U.S. is important for a number of 
reasons. First, the U.S. encompasses a large continental area 
with a diversity of climatic regimes. In addition, it is home to a 
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substantial human population and a large and diverse econ-
omy that is at least partly dependent on climate, including a 
large fraction of the global agricultural production. Further, 
the U.S. has become a significant party in climate change 
negotiations, both because it is one of the largest GHG 
emitters and because local and state governments are entering 
into climate agreements independent of Federal action [e.g., 
Rabe, 2004]. The latter is particularly relevant for the identi-
fication of climate change hotspots within the United States, 
as the emergence of the state government as a primary unit of 
climate policy action enhances the need for regional- and 
state-level climate change information [Rabe, 2004]. 
[4] Climate change hotspots can be identified based on 

the magnitude of physical climate response (as in work by 
Giorgi [2006]) or on the vulnerability to climate change 
impacts [e.g., Diffenbaugh et al., 2007a]. Specific impact 
assessments can provide detailed quantification of the poten-
tial vulnerability of particular natural and human systems 
[e.g., White et al., 2006]. Although a framework does not yet 
exist for quantitatively exploring a large suite of possible 
impacts while also capturing the likely spatial complexity of 
physical climate change, measures of the net change within 
multivariate climate space can serve as a metric of the total 
responsiveness of different geographic areas, which can in 
turn provide a general indication of which areas might be 
faced with the greatest aggregate changes in physical climate 
stress in the coming decades. To date, such response-based 
hotspot identification has focused on global climate model 
assessment, using either statistical [Williams et al., 2007] or 
subjective [Diffenbaugh et al., 2007a; Giorgi, 2006] aggre-
gation of multiple climate variables. 
[5] Here we focus on the physical response, employing 

statistical measures of aggregate climate change to identify 
regional climate change hotspots within the continental U.S. 
We explore the climate change uncertainty space by ana-
lyzing: (1) the CMIP3 multi-model atmosphere-ocean gen-
eral circulation model (AOGCM) ensemble [IPCC, 2007], 
which allows us to examine the effect of different physical 
treatments of the climate system as well as different GHG 
emission scenarios; (2) two aggregated statistical metrics of 
climate change, which allows us to examine the sensitivity 
to the hotspot identification method; and (3) a high-resolu-
tion nested climate simulation, which allows us to explore 
the importance of fine-scale processes in modulating the 
climate change signal. The last of these is important because 
both the magnitude [e.g., Diffenbaugh et al., 2005, 2007] 
and impacts [e.g., White et al., 2006] of simulated climate 
change can vary substantially at sub-GCM grid-scales. 

2. Models and Methods 
2.1. Climate Model Data 
[6] We analyze AOGCM simulations from the CMIP3 

multi-model archive. The CMIP3 models successfully cap-
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ture the structure of temperature and precipitation over the 
continental U.S. [Randall et al., 2007]. In order to test the 
sensitivity of our hotspot identification to GHG concen-
tration, we analyze CMIP3 data from the A2 and B1 
emission scenarios [IPCC, 2000]. The A2 and B1 socio-
economic pathways result in GHG concentrations at the 
higher and lower ends of the IPCC illustrative scenario 
range, respectively [IPCC, 2007]. In order to facilitate 
direct comparisons between the A2 and B1 ensemble 
simulations, we use results from 15 models archiving data 
for both scenarios. 
[7] To test the sensitivity of the hotspot identification 

to fine-scale climate processes, we employ the Abdus 
Salam International Center for Theoretical Physics Regional 
Climate Model (RegCM3) [Pal et al., 2007]. RegCM3 
is able to capture the climatology of temperature and 
precipitation over a number regions of the world [e.g., 
Pal et al., 2007], including the United States [e.g., 
Diffenbaugh et al., 2006]. We use the simulations described 
by Diffenbaugh et al. [2005], White et al. [2006], and Trapp 
et al. [2007]. The model domain covers the conterminous 
U.S. and adjacent ocean waters with a 25 km horizontal grid 
interval and 18 levels in the vertical. The RegCM3 simu-
lations use atmospheric boundary conditions from the 
NASA finite volume GCM (FVGCM) simulations of 
Coppola and Giorgi [2005]. In this configuration, the global 
FVGCM grid has 1� horizontal resolution in latitude and 
1.25� in longitude, with 18 levels in the vertical. In the 
reference simulation the models use observed monthly-
varying SSTs, while in the future climate simulation a 
monthly-varying SSTanomaly is added based on A2 scenario 
simulations with the HadCM3 AOGCM, as described in 
[Giorgi et al., 2004]. Although the atmospheric boundary 
conditions provided by the FVGCM are equilibrated with 
the prescribed SSTs, inconsistencies between the atmo-
spheric and SST fields could be introduced by the lack of 
two-way coupling between the atmosphere and ocean in the 
FVGCM simulations. 
[8] Finally, in order to examine the role of the large-scale 

boundary conditions in shaping the response of the high-
resolution climate model, we also analyze the FVGCM 
simulations, using the reference period of 1961-1989 and 
the future period of 2071-2099 in the A2 scenario. 

2.2. Hotspot Identification 
[9] The goal of this study is to develop metrics for 

comparing the relative responsiveness of different regions 
of the U.S. within a multivariate climate space. This hotspot 
identification requires aggregation of positive and negative 
changes in a number of climate variables of different scales 
and units. In order to meet this challenge, we use two 
statistical measures to identify climate change hotspots. 
Our identification framework is based on that of Giorgi 
[2006], Diffenbaugh et al. [2007a], and Williams et al. 
[2007]. Following Giorgi [2006], we quantify the aggregate 
response of mean and variability of seasonal temperature 
and precipitation. We calculate mean temperature and 
precipitation as the long-term average of each year’s 
seasonal mean. Following Giorgi [2006], we calculate 
temperature variability as the interannual standard deviation 
of the seasonal means, and precipitation variability as 
the interannual coefficient of variation of the seasonal 

means (the interannual standard deviation divided by 
the long-term mean), after first detrending the seasonal 
timeseries. 
[10] Following Giorgi [2006], Diffenbaugh et al. 

[2007a], and Williams et al. [2007], we separate each year 
into two seasons in order to capture sub-annual changes that 
could potentially cancel at the annual-scale (for instance, 
drying in one season and wetting in another). We follow 
Giorgi [2006] and Diffenbaugh et al. [2007a] in designating 
April through September and October through March as the 
two 6-month seasons for the continental U.S. These also 
encompass the June-July-August and December-January-
February seasons of Williams et al. [2007]. We aggregate 
the different seasons by treating them as different variables, 
yielding eight total variables to be used in our aggregation 
metrics (long-term mean and variability of warm- and cold-
season temperature and precipitation). 
[11] We employ two hotspot identification metrics. The 

first follows Williams et al. [2007] in employing the 
Standard Euclidean Distance (SED) to measure the distance 
traveled in multivariate climate space. At each land grid 
point, we calculate the total SED between the future (f) and 
present (p) periods as: 

SEDfp ¼ sqrtðSvSEDvÞ ð1Þ 

for 

� � � �� � � 2 2 
SEDv ¼ xfv � xpv = mean abs xfv � xpv ð2Þ

ij 

where xfv is the value of variable v in the future period, xpv is
the value of variable v in the reference period, and 
mean[abs(xfv – xpv)]ij is the mean of the absolute value of 
land-grid-point change for variable v over all land grid 
points ij. The denominator in equation (2) is used to 
normalize the metric. We find that using a regional or global 
domain in the denominator yields similar results (not 
shown). 
[12] As an additional metric, we use the squared cord 

distance dissimilarity coefficient (SCD) of Overpeck et al. 
[1992]. The SCD quantifies the dissimilarity between sam-
ple populations. At each land grid point, we calculate the 
total SCD between the future (f) and present (p) periods as 
the sum of the SCD scores for each variable v : 

SCDfp ¼ ðSvSCDvÞ ð3Þ 

for 

 � � � ! � �2 � �2
1=2 1=2

SCDv ¼ =x 1 2
fv � x =S:D: x � x 1=2pv fv pv ð4Þ

ij

where 1/2 S.D.([(x 1/2
fv – x 2

pv ) ])ij is the standard deviation of the 
land-grid-point dissimilarity values for variable v over all 
land grid points ij. Because we normalize the SED values by 
the grid-point mean, we instead normalize the SCD values 
by the grid-point standard deviation in order to explore the 
sensitivity of the hotspot identification to the details of the 
identification method. 
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Figure 1. Aggregate climate change scores in the United States: (top) aggregate scores using the Standard Euclidean 
Distance (SED) and (bottom) aggregate scores using the Squared Cord Distance (SCD). Unitless. 

[13] In aggregating the different models in the CMIP3 
ensemble, we first calculate the eight variables for each 
model individually, then calculate the mean value of each 
variable from all of the models, and then calculate the 
aggregate metrics using those multi-model mean values of 
the eight variables. 

3. Results 

[14] The CMIP3 ensemble dataset shows peak SED 
scores (i.e., hotspots) over southern California, northern 
Mexico, and western Texas (Figure 1). Minimum CMIP3 
SED scores occur over the Gulf Coast and Atlantic Coast 
regions, as well as the northern Great Plains. The FVGCM 
dataset shows SED peaks over central California, northern 
Mexico, and western Texas, although these are more local-
ized than in the CMIP3 dataset. In addition, the FVGCM 
shows relatively high SED scores over the Midwestern U.S. 

and minimum SED scores over the southeastern and north-
western U.S. The RegCM3 dataset shows highly localized 
peak SED scores over southern California, western Arizona, 
northern Mexico and the Atlantic Coast, along with sec-
ondary peaks over the Midwestern U.S. The SCD scores 
show generally similar patterns as the SED scores for all 
three datasets. Key exceptions include muting of the central 
California hotspot in the FVGCM simulations, and en-
hancement of the Midwestern hotspot in all three datasets. 
[15] The pattern of SED hotspots is shaped more by 

changes in interannual variability than by changes in the 
long-term mean of the contributing variables (Figure 2). For 
instance, the two most prominent contributors to the CMIP3 
southern California hotspot are the two seasonal precipita-
tion variability variables, and the three most prominent 
contributors to the CMIP3 northern Mexico and western 
Texas hotspots are the two seasonal precipitation variability 
variables and October-March temperature variability (along 

Figure 2. Variables contributing to aggregate climate change hotspots in the United States: (top) variables contributing to 
the CMIP3 hotspots, (middle) variables contributing to the FVGCM hotspots, and (bottom) contributing to the RegCM3 
hotspots. The four variables making the highest contribution to the Standard Euclidean Distance (SED) hotspots identified 
in Figure 1 are shown for each of the climate model datasets. In order to most readily compare the variable contributions 
with the net SED value, we show the square root of the individual SEDv variable scores (see equation (2)). Unitless. 
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Figure 3. Sensitivity of aggregate climate change scores to greenhouse gas concentration and pathway: (top) results for 
the A2 emissions scenario and (bottom) results for the B1 emissions scenario. The aggregate Standard Euclidean Distance 
(SED) scores are shown for three three-decade periods of the 21st century. Unitless. 

with April-September mean precipitation over northern 
Texas). Likewise, the primary contributors to the FVGCM 
central California and western Texas hotspots are the two 
seasonal precipitation variability variables, and the two most 
prominent contributors to the FVGCM SED Midwestern 
hotspot are the two seasonal temperature variability 
variables. Additionally, the primary contributors to the 
RegCM3 southern California and western Arizona SED 
hotpots are the two precipitation variability variables. Across 
the simulations, warm-season variability is generally a 
stronger contributor than cold-season variability (Figure 2). 
[16] The pattern of SED hotspots shows little sensitivity 

to either the time evolution or the total concentration of 
atmospheric GHGs (Figure 3). For instance, in both the A2 
and B1 emissions scenarios, southern California, western 
Texas, and northern Mexico emerge with the highest SED 
scores in the late 21st century, with the southeastern U.S. 
and northern Great Plains showing the lowest SED scores. 
Likewise, this is the basic hotspot pattern in both scenarios 
throughout the 21st century. Notable exceptions include a 
narrowing of the southern California hotspot in the early 
21st century of the A2 CMIP3 dataset, as well as a slight 
westward migration of the Texas hotspot in the late 21st 
century of the A2 CMIP3 dataset. 

4. Discussion and Conclusions 

[17] The pattern of climate change hotspots in the United 
States is generally persistent in the CMIP3 multi-AOGCM 
ensemble. Southern California, northern Mexico, and west-
ern Texas show the greatest climate change responsiveness 
in the late-21st century using either of the identification 
methods that we have applied. The Midwest region also 
shows relatively high hotspot metric values, while the Gulf 
Coast and Atlantic Coast regions show the least respon-
siveness (Figure 1). Similarly, the pattern of responsiveness 
is largely consistent between high- and low-end emissions 
scenarios, and throughout the 21st century (Figure 3). This 
pattern is mostly in place even in the early 21st century, 
when differences in GHG forcing are relatively small 
compared to present and the inter-model variability could 
damp the climate change signal. This persistence of the 
hotspot pattern in the CMIP3 ensemble suggests that the 
broad patterns of climate responsiveness may be robust to 
climate system variability. (Whether the patterns are robust 
to model formulation requires further analysis.) 

[18] It is also notable that a single FVGCM realization 
not included in the CMIP3 ensemble displays a number of 
features seen in that ensemble (particularly for the SED 
metric; Figure 1). FVGCM does show considerably more 
sensitivity to the hotspot identification method (as does 
RegCM3), particularly over California and the Midwestern 
United States. This sensitivity of the single realization to the 
identification method could indicate that multiple realiza-
tions using multiple climate models are required in order to 
generate reliable projections of relative regional climate 
sensitivity. In addition, the fact that the FVGCM dataset 
consists of only one realization could explain the strength of 
the Midwestern hotspot in the FVGCM dataset relative to 
the CMIP3 dataset, with multiple realizations in the CMIP3 
ensemble potentially damping the magnitude of changes in 
seasonal temperature variability (Figure 2). Alternatively, 
the relatively fine horizontal resolution of the FVGCM grid 
could also contribute to deviations from the CMIP3 ensem-
ble. Likewise, whereas the CMIP3 ensemble consists of 
coupled atmosphere-ocean GCM simulations, the FVGCM 
realization was generated using prescribed SSTs synthesized 
by adding simulated SST changes to an observational SST 
timeseries (as described by Giorgi et al. [2004]. 
[19] The pattern of SED and SCD scores in the RegCM3 

simulations highlights the limitations of applying high-
resolution climate models to statistical climate change 
hotspot identification. Although the RegCM3 simulations 
reveal high scores within some of the areas identified in the 
GCM simulations, those hotspot areas are highly localized, 
with considerably lower scores elsewhere in the domain 
(Figure 1). This localization is also seen in the contributing 
variables, with a large range between the few grid-points 
showing maximum values and the vast majority of grid-
points showing minimum values (Figure 2). Some of the 
differences between the RegCM3 and CMIP3 patterns can 
be linked to the forcing by the FVGCM (such as the 
relatively high SCD and SED values over the Midwestern 
U.S.). However, the overall pattern in the RegCM3 simu-
lations deviates more from the driving FVGCM than the 
FVGCM deviates from the CMIP3 ensemble, highlighting 
the need for multiple realizations with multiple GCM-RCM 
combinations in order to generate robust high-resolution 
hotspot identification. 
[20] Peak aggregate climate changes in all three climate 

model datasets are driven primarily by changes in interan-
nual variability, particularly of precipitation. This domi-
nance of variability results from the fact that there is more 
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inter-grid-point heterogeneity in the changes in variability 
than in the changes in seasonal mean. The fact that the 
hotspot distribution is strongly influenced by changes in 
precipitation variability highlights the importance of 
accurate modeling of cloud and precipitation processes. 
Further, non-hotspot areas should not be considered to be 
immune from climate change, as the climatic changes 
projected here could have substantial impact in areas that 
are not identified as response hotspots [e.g., Trapp et al., 
2007; White et al., 2006]. 
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